

RICK Antibody

Catalog # ASC10050

Specification

RICK Antibody - Product Information

Application ICC
Primary Accession 043353

Other Accession
Reactivity
Odd3353, 8767
Human, Mouse, Rat

Host Rabbit
Clonality Polyclonal
Isotype IgG

Calculated MW Predicted: 59 kDa

Observed: 60 kDa KDa

Application Notes

RICK antibody can be used for detection of RICK by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry

starting at 10 μg/mL. For

immunofluorescence start at 20 μg/mL.

RICK Antibody - Additional Information

Gene ID 8767

Other Names

RICK Antibody: CCK, RICK, RIP2, CARD3, GIG30, CARDIAK, UNQ277/PRO314/PRO34092, CARD-containing interleukin-1 beta-converting enzyme-associated kinase, CARD-containing IL-1 beta ICE-kinase, receptor-interacting serine-threonine kinase 2

Target/Specificity

RICK antibody was raised against a peptide corresponding to 20 amino acids near the amino terminus of human RICK.

The immunogen is located within the first 50 amino acids of RICK.

Reconstitution & Storage

RICK antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

RICK Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

RICK Antibody - Protein Information

Name RIPK2 {ECO:0000303|PubMed:30026309, ECO:0000312|HGNC:HGNC:10020}

Function

Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and

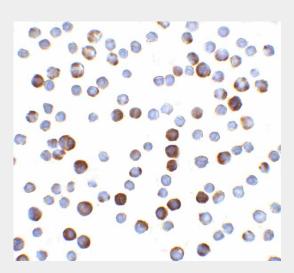
adaptive immune responses (PubMed: 14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed: 17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed: 22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: 18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed: 29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the quanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed: 14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed: 26646181).

Cellular Location

Cytoplasm. Cell membrane; Peripheral membrane protein. Endoplasmic reticulum. Note=Recruited to the cell membrane by NOD2 following stimulation by bacterial peptidoglycans

Tissue Location

Detected in heart, brain, placenta, lung, peripheral blood leukocytes, spleen, kidney, testis, prostate, pancreas and lymph node.



RICK Antibody - Protocols

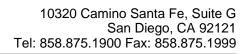
Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

RICK Antibody - Images

Immunocytochemistry of Caspase-9 in HeLa cells with Caspase-9 antibody at 5 μg/ml.

RICK Antibody - Background


RICK Antibody: Apoptosis is mediated by death domain (DD) and/or caspase recruitment domain (CARD) containing molecules and a caspase family of proteases. DD-containing serine/threonine kinase RIP regulates Fas-induced apoptosis. A novel CARD-containing serine/threonine kinase was recently identified and designated RICK/RIP2/CARDIAK for RIP-like interacting CLARP kinase, receptor interacting protein-2, and CARD-containing ICE associated kinase, respectively. RICK contains an N-terminal kinase catalytic domain and a C-terminal CARD domain. Overexpression of RICK induced apoptosis and activation of NF-κB and JNK. RICK interacts with members of the TRAF family, CLARP and caspase-1. Thus, RICK represents a novel kinase that regulates TNF and Fas induced-apoptosis and that is involved in the generation of proinflammatory cytokine IL-1β. The messenger RNA of RICK is expressed in multiple human tissues.

RICK Antibody - References

Inohara N, del Peso L, Koseki T, et al. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J. Biol. Chem. 1998; 273:12296-300.

McCarthy JV, Ni J, and Dixit VM. RIP2 is a novel NF-κB-activating and cell death-inducing kinase. J. Biol. Chem. 1998; 273:16968-75.

Thome M, Hofmann K, Burns K, et al. Identification of CARDIAK, a RIP-like kinase that associates

with caspase-1. Curr. Biol. 1998; 8:885-8.