

BTK Rabbit mAb

Catalog # AP77523

Specification

BTK Rabbit mAb - Product Information

Application
Primary Accession
Reactivity
Host
Clonality
Calculated MW

WB
O06187
Human
Rabbit
Monoclonal Antibody
76281

BTK Rabbit mAb - Additional Information

Gene ID 695

Other Names BTK

Dilution WB~~1/500-1/1000

Format Liquid

BTK Rabbit mAb - Protein Information

Name BTK

Synonyms AGMX1, ATK, BPK

Function

Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:<a href="http://www.uniprot.org/citations/19290921"

target="_blank">19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:<a href="http://www.uniprot.org/citations/11606584"

target="_blank">11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a

component of the Toll-like receptors (TLR) pathway (PubMed: 16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:<a href="http://www.uniprot.org/citations/16517732"

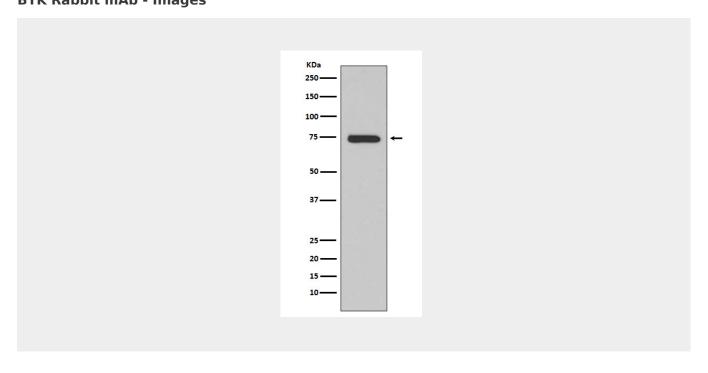
target="_blank">16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF- kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831/a>). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831, ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1- mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810).

Cellular Location

Cytoplasm. Cell membrane; Peripheral membrane protein. Nucleus Membrane raft {ECO:0000250|UniProtKB:P35991}. Note=In steady state, BTK is predominantly cytosolic. Following B-cell receptor (BCR) engagement by antigen, translocates to the plasma membrane through its PH domain Plasma membrane localization is a critical step in the activation of BTK. A fraction of BTK also shuttles between the nucleus and the cytoplasm, and nuclear export is mediated by the nuclear export receptor CRM1.

Tissue Location

Predominantly expressed in B-lymphocytes.


BTK Rabbit mAb - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety

• <u>Cell Culture</u> BTK Rabbit mAb - Images

