

GNE Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP5318B

Specification

GNE Antibody (C-term) - Product Information

Application WB, FC,E
Primary Accession Q9Y223

Other Accession <u>035826, 091WG8, 07TQ49, NP 005467.1</u>

Reactivity Human, Mouse Predicted Hamster, Rat

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 79275
Antigen Region 580-607

GNE Antibody (C-term) - Additional Information

Gene ID 10020

Other Names

Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, UDP-GlcNAc-2-epimerase/ManAc kinase, UDP-N-acetylglucosamine 2-epimerase (hydrolyzing), UDP-GlcNAc-2-epimerase, Uridine diphosphate-N-acetylglucosamine-2-epimerase, N-acetylmannosamine kinase, ManAc kinase, GNE, GLCNE

Target/Specificity

This GNE antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 580-607 amino acids from the C-terminal region of human GNE.

Dilution

WB~~1:1000 FC~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

GNE Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

GNE Antibody (C-term) - Protein Information

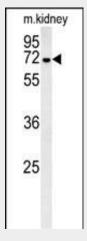
Name GNE (HGNC:23657)

Function Bifunctional enzyme that possesses both UDP-N- acetylglucosamine 2-epimerase and N-acetylmannosamine kinase activities, and serves as the initiator of the biosynthetic pathway leading to the production of N-acetylneuraminic acid (NeuAc), a critical precursor in the synthesis of sialic acids. By catalyzing this pivotal and rate-limiting step in sialic acid biosynthesis, this enzyme assumes a pivotal role in governing the regulation of cell surface sialylation, playing a role in embryonic angiogenesis (PubMed:10334995, PubMed:11326336, PubMed:14707127, PubMed:16503651, PubMed:2808337, PubMed:38237079). Sialic acids represent a category of negatively charged sugars that reside on the surface of cells as terminal components of glycoconjugates and mediate important functions in various cellular processes, including cell adhesion, signal transduction, and cellular recognition (PubMed:10334995, PubMed:14707127).

Cellular Location

Cytoplasm, cytosol {ECO:0000250|UniProtKB:O35826}

Tissue Location


Highest expression in liver and placenta. Also found in heart, brain, lung, kidney, skeletal muscle and pancreas Isoform 1 is expressed in heart, brain, kidney, liver, placenta, lung, spleen, pancreas, skeletal muscle and colon. Isoform 2 is expressed mainly in placenta, but also in brain, kidney, liver, lung, pancreas and colon. Isoform 3 is expressed at low level in kidney, liver, placenta and colon.

GNE Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

GNE Antibody (C-term) - Images

GNE Antibody (C-term) (Cat. #AP5318b) western blot analysis in mouse kidney tissue lysates (35ug/lane). This demonstrates the GNE antibody detected GNE protein (arrow).

GNE Antibody (C-term) (Cat. #AP5318b) flow cytometric analysis of Jurkat cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

GNE Antibody (C-term) - Background

GNE is a bifunctional enzyme that initiates and regulates the biosynthesis of N-acetylneuraminic acid (NeuAc), a precursor of sialic acids. It is a rate-limiting enzyme in the sialic acid biosynthetic pathway. Sialic acid modification of cell surface molecules is crucial for their function in many biologic processes, including cell adhesion and signal transduction. Differential sialylation of cell surface molecules is also implicated in the tumorigenicity and metastatic behavior of malignant cells.

GNE Antibody (C-term) - References

Reinke, S.O., et al. Glycoconj. J. 26(4):415-422(2009) Tong, Y., et al. PLoS ONE 4 (10), E7165 (2009) Klootwijk, R.D., et al. FASEB J. 22(11):3846-3852(2008)