

Caspase 6 p18 Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP51046

Specification

Caspase 6 p18 Antibody - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW

WB, IHC-P, E <u>P55212</u> Human, Mouse, Rat Rabbit Polyclonal 28, 35 KDa

Caspase 6 p18 Antibody - Additional Information

Gene ID 839

Other Names Caspase-6, CASP-6, Apoptotic protease Mch-2, Caspase-6 subunit p18, Caspase-6 subunit p11, CASP6, MCH2

Format 0.01M PBS, pH 7.2, 0.09% (W/V) Sodium azide, Glycerol 50%

Storage Store at -20 °C.Stable for 12 months from date of receipt

Caspase 6 p18 Antibody - Protein Information

Name CASP6 (<u>HGNC:1507</u>)

Function

Cysteine protease that plays essential roles in programmed cell death, axonal degeneration, development and innate immunity (PubMed:19133298, PubMed:22858542, PubMed:22858542, PubMed:22858542, PubMed:22858542, PubMed:22858542, PubMed:22858542, PubMed:28864531, PubMed:28864531, PubMed:30420425, PubMed:30420425, PubMed:32298652, PubMed:32298652, PubMed:8663580). Acts as a non- canonical executioner caspase during apoptosis: localizes in the nucleus and cleaves the nuclear structural protein NUMA1 and lamin A/LMNA thereby inducing nuclear shrinkage and fragmentation (PubMed:11953316, PubMed:11953316, PubMed:11953316, PubMed:<a href="http://www.uniprot.org/citations/200425"

href="http://www.uniprot.org/citations/11953316" target="_blank">11953316, PubMed:17401638, PubMed:8663580, PubMed:9463409). Lamin-A/LMNA cleavage is required for chromatin condensation and nuclear disassembly during apoptotic

execution (PubMed: 11953316). Acts as a regulator of liver damage by promoting hepatocyte apoptosis: in absence of phosphorylation by AMP-activated protein kinase (AMPK), catalyzes cleavage of BID, leading to cytochrome c release, thereby participating in nonalcoholic steatohepatitis (PubMed:32029622). Cleaves PARK7/DJ-1 in cells undergoing apoptosis (By similarity). Involved in intrinsic apoptosis by mediating cleavage of RIPK1 (PubMed:22858542). Furthermore, cleaves many transcription factors such as NF-kappa-B and cAMP response element-binding protein/CREBBP (PubMed:10559921, PubMed:14657026). Cleaves phospholipid scramblase proteins XKR4 and XKR9 (By similarity). In addition to apoptosis, involved in different forms of programmed cell death (PubMed:32298652). Plays an essential role in defense against viruses by acting as a central mediator of the ZBP1-mediated pyroptosis, apoptosis, and necroptosis (PANoptosis), independently of its cysteine protease activity (PubMed:32298652). PANoptosis is a unique inflammatory programmed cell death, which provides a molecular scaffold that allows the interactions and activation of machinery required for inflammasome/pyroptosis, apoptosis and necroptosis (PubMed:32298652). Mechanistically, interacts with RIPK3 and enhances the interaction between RIPK3 and ZBP1, leading to ZBP1-mediated inflammasome activation and cell death (PubMed:32298652). Plays an essential role in axon degeneration during axon pruning which is the remodeling of axons during neurogenesis but not apoptosis (By similarity). Regulates B-cell programs both during early development and after antigen stimulation (By similarity).

Cellular Location Cytoplasm. Nucleus

Caspase 6 p18 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Caspase 6 p18 Antibody - Images

Caspase 6 p18 Antibody - Background

Involved in the activation cascade of caspases responsible for apoptosis execution. Cleaves poly(ADP-ribose) polymerase in vitro, as well as lamins. Overexpression promotes programmed cell death.

Caspase 6 p18 Antibody - References

Fernandes-Alnemri T., et al.Cancer Res. 55:2737-2742(1995). Srinivasula S.M., et al.J. Biol. Chem. 271:27099-27106(1996).

Bartke T.,et al.Mol. Cell 14:801-811(2004). Suzuki A.,et al.Oncogene 23:7067-7075(2004). Burkard T.R.,et al.BMC Syst. Biol. 5:17-17(2011).