

### FOLR1 antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP22431a

## Specification

# FOLR1 antibody - Product Information

Application Primary Accession Reactivity Host Clonality Isotype Calculated MW WB,E <u>P15328</u> Human, Mouse Rabbit polyclonal Rabbit Ig 29819

## FOLR1 antibody - Additional Information

Gene ID 2348

### **Other Names**

Folate receptor alpha, FR-alpha, Adult folate-binding protein, FBP, Folate receptor 1, Folate receptor, adult, KB cells FBP, Ovarian tumor-associated antigen MOv18, FOLR1, FOLR

### Target/Specificity

This antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between amino acids from human.

Dilution WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

FOLR1 antibody is for research use only and not for use in diagnostic or therapeutic procedures.

# FOLR1 antibody - Protein Information

Name FOLR1

Synonyms FOLR

**Function** Binds to folate and reduced folic acid derivatives and mediates delivery of 5-methyltetrahydrofolate and folate analogs into the interior of cells (PubMed:<u>19074442</u>,

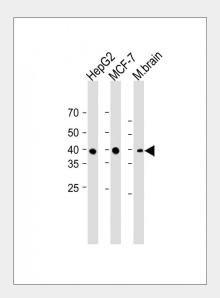


PubMed:<u>23851396</u>, PubMed:<u>23934049</u>, PubMed:<u>2527252</u>, PubMed:<u>8033114</u>, PubMed:<u>8567728</u>). Has high affinity for folate and folic acid analogs at neutral pH (PubMed:<u>23851396</u>, PubMed:<u>23934049</u>, PubMed:<u>2527252</u>, PubMed:<u>8033114</u>, PubMed:<u>8567728</u>). Exposure to slightly acidic pH after receptor endocytosis triggers a conformation change that strongly reduces its affinity for folates and mediates their release (PubMed:<u>8567728</u>). Required for normal embryonic development and normal cell proliferation (By similarity).

#### **Cellular Location**

Cell membrane; Lipid-anchor, GPI-anchor Apical cell membrane; Lipid-anchor, GPI- anchor Basolateral cell membrane; Lipid-anchor, GPI-like-anchor. Secreted Cytoplasmic vesicle. Cytoplasmic vesicle, clathrin-coated vesicle. Endosome. Note=Endocytosed into cytoplasmic vesicles and then recycled to the cell membrane

#### **Tissue Location**


Primarily expressed in tissues of epithelial origin. Expression is increased in malignant tissues. Expressed in kidney, lung and cerebellum. Detected in placenta and thymus epithelium.

### **FOLR1 antibody - Protocols**

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

# FOLR1 antibody - Images



All lanes: Anti-FOLR1 antibody at 1:1000 dilution Lane 1: HepG2 whole cell lysate Lane 2: MCF-7 whole cell lysate Lane 3: Mouse brain lysate Lysates/proteins at 20 µg per lane. Secondary: Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated (ASP1615) at 1/15000 dilution. Observed band size: 40 KDa Blocking/Dilution buffer: 5% NFDM/TBST.



# FOLR1 antibody - Background

Binds to folate and reduced folic acid derivatives and mediates delivery of 5-methyltetrahydrofolate and folate analogs into the interior of cells (PubMed:23851396, PubMed:23934049, PubMed:2527252, PubMed:8033114, PubMed:8567728, PubMed:19074442). Has high affinity for folate and folic acid analogs at neutral pH (PubMed:23851396, PubMed:23934049, PubMed:2527252, PubMed:8033114, PubMed:8567728). Exposure to slightly acidic pH after receptor endocytosis triggers a conformation change that strongly reduces its affinity for folates and mediates their release (PubMed:8567728). Required for normal embryonic development and normal cell proliferation (By similarity).

## FOLR1 antibody - References

Elwood P.C., et al.J. Biol. Chem. 264:14893-14901(1989). Lacey S.W., et al.J. Clin. Invest. 84:715-720(1989). Campbell I.G., et al.Cancer Res. 51:5329-5338(1991). Coney L.R., et al.Cancer Res. 51:6125-6132(1991). Sadasivan E., et al.Biochim. Biophys. Acta 1131:91-94(1992).