

Anti-Notch 3 Homolog Antibody

Catalog # AN2188

Specification

Anti-Notch 3 Homolog Antibody - Product Information

Application WB
Primary Accession Q9UM47
Host Rabbit

Clonality Rabbit Polyclonal

Isotype IgG
Calculated MW 243631

Anti-Notch 3 Homolog Antibody - Additional Information

Gene ID 4854

Other Names

Neurogenic locus notch homolog protein 3, hN3,

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

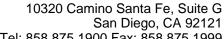
Precautions

Anti-Notch 3 Homolog Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice

Anti-Notch 3 Homolog Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Anti-Notch 3 Homolog Antibody - Images

Anti-Notch 3 Homolog Antibody - Background

Notch signaling plays a key role in the normal development of many tissues and cell types, through diverse effects on differentiation, survival, and/or proliferation that are highly dependent on signal strength and cellular context. Members of the Notch gene family encode transmembrane receptors

Tel: 858.875.1900 Fax: 858.875.1999

that are critical for various cell fate decisions. Notch family members share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple, different domain types. Multiple human notch proteins (NOTCH1, NOTCH2, NOTCH3 and NOTCH4) have been identified and they function as a receptors for membrane bound ligands. Notch signaling is also linked to tumorigenesis as first demonstrated by the identification of a recurrent t(7;9)(q34;q34.3) chromosomal translocation involving the human Notch1 gene that is found in a small subset of human pre-T-cell acute lymphoblastic leukemias (T-ALL). Since this discovery, aberrant Notch signaling has been suggested to be involved in a wide variety of human neoplasms. Mutations in NOTCH3 have been identified as the underlying cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).