

PARK7 / DJ-1 Antibody (clone 3E8)

Mouse Monoclonal Antibody Catalog # ALS17222

Specification

PARK7 / DJ-1 Antibody (clone 3E8) - Product Information

Application IHC-P, WB Primary Accession 099497 Other Accession 11315 Reactivity Human Host Mouse Clonality **Monoclonal** Isotype IqG1 Calculated MW 19891

PARK7 / DJ-1 Antibody (clone 3E8) - Additional Information

Gene ID 11315

Other Names

PARK7, DJ-1, DJ1, Parkinson disease protein 7, Park-7, Oncogene DJ1, Parkinson protein 7, Protein DJ-1

Target/Specificity

Human PARK7 / DJ-1

Reconstitution & Storage

PBS, pH 7.2, 50% glycerol. Store at -20°C.

Precautions

PARK7 / DJ-1 Antibody (clone 3E8) is for research use only and not for use in diagnostic or therapeutic procedures.

PARK7 / DJ-1 Antibody (clone 3E8) - Protein Information

Name PARK7 (HGNC:16369)

Function

Multifunctional protein with controversial molecular function which plays an important role in cell protection against oxidative stress and cell death acting as oxidative stress sensor and redox-sensitive chaperone and protease (PubMed:12796482, PubMed:17015834, PubMed:18711745, PubMed:19229105, PubMed:20304780, PubMed:25416785, PubMed:26995087, PubMed:<a href="http://www.uniprot.org/citations/28993701"

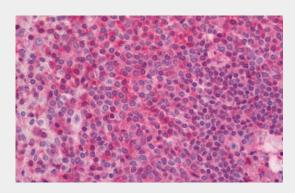
target=" blank">28993701). It is involved in neuroprotective mechanisms like the stabilization of NFE2L2 and PINK1 proteins, male fertility as a positive regulator of androgen signaling pathway as well as cell growth and transformation through, for instance, the modulation of NF-kappa-B signaling pathway (PubMed: 12612053, PubMed:14749723, PubMed:15502874, PubMed:17015834, PubMed:18711745, PubMed:21097510). Has been described as a protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals (PubMed:25416785, PubMed:28596309). But this function is rebuted by other works (PubMed:27903648, PubMed:31653696). As a protein deglycase, repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Acts on early glycation intermediates (hemithioacetals and aminocarbinols), preventing the formation of advanced glycation endproducts (AGE) that cause irreversible damage (PubMed: 25416785, PubMed:26995087, PubMed:28013050). Also functions as a nucleotide deglycase able to repair glycated guanine in the free nucleotide pool (GTP, GDP, GMP, dGTP) and in DNA and RNA. Is thus involved in a major nucleotide repair system named guanine glycation repair (GG repair), dedicated to reversing methylglyoxal and glyoxal damage via nucleotide sanitization and direct nucleic acid repair (PubMed: 28596309). Protects histones from adduction by methylglyoxal, controls the levels of methylglyoxal- derived argininine modifications on chromatin (PubMed: 30150385). Able to remove the glycations and restore histone 3, histone glycation disrupts both local and global chromatin architecture by altering histone-DNA interactions as well as histone acetylation and ubiquitination levels (PubMed: 30150385, PubMed:30894531). Displays a very low glyoxalase activity that may reflect its deglycase activity (PubMed: 22523093, PubMed:28993701, PubMed:31653696). Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death (PubMed:16390825). Required for correct mitochondrial morphology and function as well as for autophagy of dysfunctional mitochondria (PubMed:16632486, PubMed:19229105). Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking (PubMed: 18711745). Regulates astrocyte inflammatory responses, may modulate lipid rafts-dependent endocytosis in astrocytes and neuronal cells (PubMed: 23847046). In pancreatic islets, involved in the maintenance of mitochondrial reactive oxygen species (ROS) levels and glucose homeostasis in an age- and diet dependent manner. Protects pancreatic beta cells from cell death induced by inflammatory and cytotoxic setting (By similarity). Binds to a number of mRNAs containing multiple copies of GG or

CC motifs and partially inhibits their translation but dissociates following oxidative stress (PubMed:18626009). Metal-binding protein able to bind copper as well as toxic mercury ions, enhances the cell protection mechanism against induced metal toxicity (PubMed:23792957). In macrophages, interacts with the NADPH oxidase subunit NCF1 to direct NADPH oxidase-dependent ROS production, and protects against sepsis (By similarity).

Cellular Location

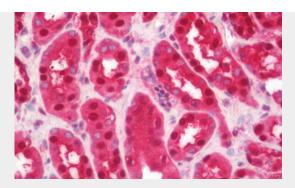
Cell membrane {ECO:0000250|UniProtKB:Q99LX0}; Lipid-anchor {ECO:0000250|UniProtKB:Q99LX0}. Cytoplasm. Nucleus. Membrane raft {ECO:0000250|UniProtKB:O88767}. Mitochondrion. Endoplasmic reticulum. Note=Under normal conditions, located predominantly in the cytoplasm and, to a lesser extent, in the nucleus and mitochondrion. Translocates to the mitochondrion and subsequently to the nucleus in response to oxidative stress and exerts an increased cytoprotective effect against oxidative damage (PubMed:18711745). Detected in tau inclusions in brains from neurodegenerative disease patients (PubMed:14705119). Membrane raft localization in astrocytes and neuronal cells requires palmitoylation

Tissue Location

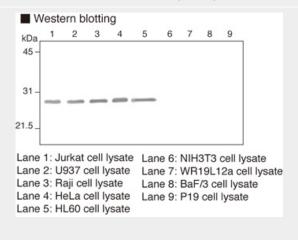

Highly expressed in pancreas, kidney, skeletal muscle, liver, testis and heart. Detected at slightly lower levels in placenta and brain (at protein level). Detected in astrocytes, Sertoli cells, spermatogonia, spermatids and spermatozoa. Expressed by pancreatic islets at higher levels than surrounding exocrine tissues (PubMed:22611253).

PARK7 / DJ-1 Antibody (clone 3E8) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

PARK7 / DJ-1 Antibody (clone 3E8) - Images



Human Spleen: Formalin-Fixed, Paraffin-Embedded (FFPE)

Human Kidney: Formalin-Fixed, Paraffin-Embedded (FFPE)

western blotting

PARK7 / DJ-1 Antibody (clone 3E8) - Background

Protects cells against oxidative stress and cell death. Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking. Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death. Following removal of a C-terminal peptide, displays protease activity and enhanced cytoprotective action against oxidative stress-induced apoptosis. Stabilizes NFE2L2 by preventing its association with KEAP1 and its subsequent ubiquitination. Binds to OTUD7B and inhibits its deubiquitinating activity. Enhances RELA nuclear translocation. Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress. Required for correct mitochondrial morphology and function and for autophagy of dysfunctional mitochondria. Regulates astrocyte inflammatory responses. Acts as a positive regulator of androgen receptor-dependent transcription. Prevents aggregation of SNCA. Plays a role in fertilization. Has no proteolytic activity. Has cell-growth promoting activity and transforming activity. May function as a redox-sensitive chaperone. May regulate lipid rafts-dependent endocytosis in astrocytes and neuronal cells.

PARK7 / DJ-1 Antibody (clone 3E8) - References

Nagakubo D., et al. Biochem. Biophys. Res. Commun. 231:509-513(1997). Beaudoin R., et al. Submitted (AUG-1997) to the EMBL/GenBank/DDBJ databases. Ariga H., et al. Submitted (NOV-2001) to the EMBL/GenBank/DDBJ databases. Ota T., et al. Nat. Genet. 36:40-45(2004). Gregory S.G., et al. Nature 441:315-321(2006).