

CHEK1 / CHK1 Antibody Rabbit Polyclonal Antibody

Catalog # ALS16838

Specification

CHEK1 / CHK1 Antibody - Product Information

Application	IHC, WB
Primary Accession	<u>014757</u>
Other Accession	<u>1111</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Clonality	Polyclonal
Isotype	IgG
Calculated MW	54434

CHEK1 / CHK1 Antibody - Additional Information

Gene ID 1111

Other Names CHEK1, CHK1 checkpoint homolog, Cell cycle checkpoint kinase, Checkpoint kinase 1, CHK1, Chk1-S, Protein kinase chk1, Checkpoint kinase-1

Reconstitution & Storage PBS, pH 7.4, 0.02% sodium azide. Store at -20°C for up to one year.

Precautions CHEK1 / CHK1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

CHEK1 / CHK1 Antibody - Protein Information

Name CHEK1

Synonyms CHK1

Function

Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA (PubMed:11535615, PubMed:12399544, PubMed:12399544, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15311285, PubMed:15311285, PubMed:15650047, PubMed:15650047, PubMed:15650047, PubMed:15650047, PubMed:15650047, PubMed:15665856, PubMed:15665856, PubMed:32357935, PubMed:32357935, PubMed:32357935, PubMed:32357935

May also negatively regulate cell cycle progression during unperturbed cell cycles (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome (PubMed: 11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). Recognizes the substrate consensus sequence [R-X-X- S/T] (PubMed:11535615, PubMed:12399544, PubMed: 12446774, PubMed: 14559997, PubMed: 14988723, PubMed:15311285, PubMed: 15650047, PubMed:15665856). Binds to and phosphorylates CDC25A, CDC25B and CDC25C (PubMed: 12676583, PubMed:12676925, PubMed:12759351, PubMed:14559997, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C (PubMed: 9278511). Phosphorylation of CDC25A at 'Ser- 76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A (PubMed:12676583, PubMed:12676925, PubMed:12759351, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A (PubMed: 19734889, PubMed:20090422, PubMed:9278511). Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression (PubMed:9278511). Also phosphorylates NEK6 (PubMed:18728393). Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous

recombination (PubMed:15665856). Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation (PubMed: 10673501, PubMed:15659650, PubMed:16511572). Also promotes repair of DNA cross-links through phosphorylation of FANCE (PubMed:17296736). Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A (PubMed:12660173, PubMed:12955071). This may enhance chromatin assembly both in the presence or absence of DNA damage (PubMed: 12660173, PubMed:12955071). May also play a role in replication fork maintenance through regulation of PCNA (PubMed:18451105). May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones (By similarity). Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes (By similarity). May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest (PubMed:17380128). Phosphorylates SPRTN, promoting SPRTN recruitment to chromatin (PubMed:31316063). Reduces replication stress and activates the G2/M checkpoint, by phosphorylating and inactivating PABIR1/FAM122A and promoting the serine/threonine-protein phosphatase 2A-mediated dephosphorylation and stabilization of WEE1 levels and activity (PubMed:33108758).

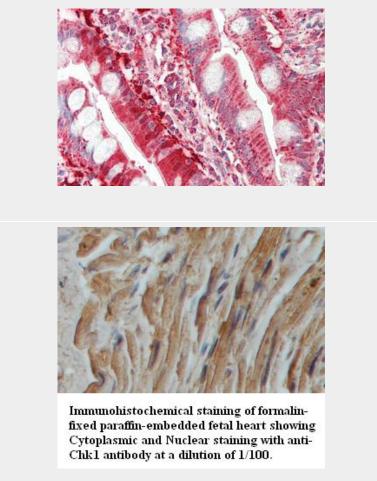
Cellular Location

Nucleus. Chromosome. Cytoplasm Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Note=Nuclear export is mediated at least in part by XPO1/CRM1 (PubMed:12676962). Also localizes to the centrosome specifically during interphase, where it may protect centrosomal CDC2 kinase from inappropriate activation by cytoplasmic CDC25B (PubMed:15311285). Proteolytic cleavage at the C-terminus by SPRTN promotes removal from chromatin (PubMed:31316063)

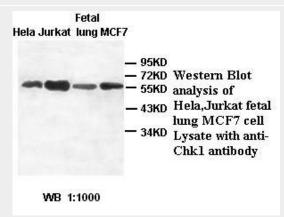
Tissue Location

Expressed ubiquitously with the most abundant expression in thymus, testis, small intestine and colon

Volume 50 μl


CHEK1 / CHK1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety

• <u>Cell Culture</u> CHEK1 / CHK1 Antibody - Images

Immunohistochemical staining of formalin-fixed paraffin-embedded fetal heart showing Cytoplasmic and Nuclear staining with anti-Chk1 antibody at a dilution of1/100

western blot analysis of hela, jurkat fetal lung mcf7 cell lysate with anti-chkl antibody CHEK1 / CHK1 Antibody - Background

Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA. May also negatively regulate cell cycle progression during unperturbed cell cycles. This regulation is

achieved by a number of mechanisms that together help to preserve the integrity of the genome. Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser- 124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A. Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A. Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. Also phosphorylates NEK6. Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination. Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation. Also promotes repair of DNA cross-links through phosphorylation of FANCE. Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A. This may enhance chromatin assembly both in the presence or absence of DNA damage. May also play a role in replication fork maintenance through regulation of PCNA. May regulate the transcription of genes that regulate cell- cycle progression through the phosphorylation of histones. Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes. May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest.

CHEK1 / CHK1 Antibody - References

Sanchez Y.,et al.Science 277:1497-1501(1997). Flaggs G.,et al.Curr. Biol. 7:977-986(1997). Semba S.,et al.Int. J. Oncol. 16:731-737(2000). Pabla N.,et al.Proc. Natl. Acad. Sci. U.S.A. 109:197-202(2012). Ota T.,et al.Nat. Genet. 36:40-45(2004).