

Goat Anti-RNF8 Antibody

Peptide-affinity purified goat antibody Catalog # AF1939a

Specification

Goat Anti-RNF8 Antibody - Product Information

Application WB
Primary Accession 076064

Other Accession NP_898901, 9025

Reactivity
Host
Clonality
Concentration
Isotype
Human
Goat
Polyclonal
100ug/200ul
IgG

Calculated MW 55518

Goat Anti-RNF8 Antibody - Additional Information

Gene ID 9025

Other Names

E3 ubiquitin-protein ligase RNF8, hRNF8, 6.3.2.-, RING finger protein 8, RNF8, KIAA0646

Format

0.5 mg lgG/ml in Tris saline (20mM Tris pH7.3, 150mM NaCl), 0.02% sodium azide, with 0.5% bovine serum albumin

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Goat Anti-RNF8 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Goat Anti-RNF8 Antibody - Protein Information

Name RNF8 {ECO:0000255|HAMAP-Rule:MF 03067}

Synonyms KIAA0646

Function

E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the

Tel: 858.875.1900 Fax: 858.875.1999

'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF) (PubMed: 18001824, PubMed:18006705). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites (PubMed:18077395, PubMed:19202061). Promotes the recruitment of NBN to DNA damage sites by catalyzing 'Lys-6'-linked ubiquitination of NBN (PubMed:23115235). Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys- 63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non-histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys- 63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'- linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'- linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites (PubMed:11322894, PubMed:14981089, PubMed:17724460, PubMed:18001825, PubMed:18337245, PubMed:18948756, PubMed:19015238, PubMed:19124460, PubMed:19203578, PubMed:19203579, PubMed:20550933, PubMed:21558560, PubMed:21857671, PubMed:21911360, PubMed:22266820, PubMed:22373579, PubMed:22531782, PubMed:22705371, PubMed:22980979). Following DNA damage, mediates the ubiquitination and degradation of POLD4/p12, a subunit of DNA polymerase delta. In the absence of POLD4, DNA polymerase delta complex exhibits higher proofreading activity (PubMed: 23233665). In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggravating telomere-induced genome instability in case of

telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair (PubMed:<a href="http://www.uniprot.org/citations/22865450"

target=" blank">22865450). May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2

(PubMed:11322894,

PubMed: 14981089,

PubMed: 17724460,

PubMed: 18001825,

PubMed: 18337245, PubMed: 18948756,

PubMed: 19015238,

PubMed:19124460,

PubMed:19203578,

PubMed:19203579,

PubMed:20550933, PubMed:21558560,

PubMed:21857671,

PubMed:21911360,

PubMed: 22266820,

PubMed: 22373579,

PubMed:22531782, PubMed: 22705371,

 $PubMed: 22980979).$

Cellular Location

Nucleus {ECO:0000255|HAMAP-Rule:MF 03067, ECO:0000269|PubMed:11322894,

ECO:0000269|PubMed:14981089, ECO:0000269|PubMed:16215985,

ECO:0000269|PubMed:23233665}. Cytoplasm {ECO:0000255|HAMAP-Rule:MF 03067}. Midbody

{ECO:0000255|HAMAP- Rule:MF 03067}. Chromosome, telomere

{ECO:0000255|HAMAP-Rule:MF 03067} Note=Recruited at uncapped telomeres (By similarity). Following DNA damage, such as double-strand breaks, recruited to the sites of damage (PubMed:18001824, PubMed:18077395, PubMed:22266820, PubMed:23233665) During prophase, concomitant with nuclear envelope breakdown, localizes throughout the cell, with a dotted pattern. In telophase, again in the nucleus and also with a discrete dotted pattern in the cytoplasm. In late telophase and during cytokinesis, localizes in the midbody of the tubulin bridge joining the daughter cells. Does not seem to be associated with condensed chromosomes at any time during the cell cycle. During spermatogenesis, seguestered in the cytoplasm by PIWIL1: RNF8 is released following ubiquitination and degradation of PIWIL1

{ECO:0000255|HAMAP-Rule:MF 03067, ECO:0000269|PubMed:18001824,

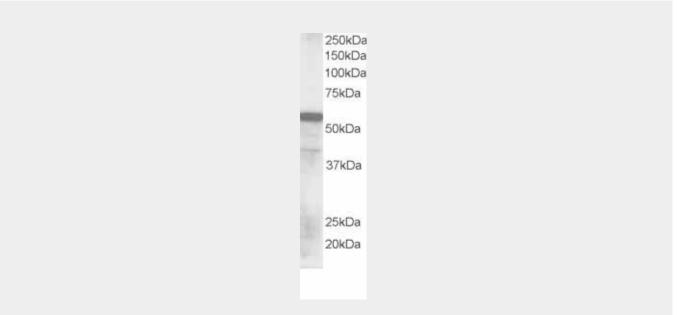
ECO:0000269|PubMed:18077395, ECO:0000269|PubMed:22266820,

ECO:0000269|PubMed:23233665}

Tissue Location

Ubiquitous. In fetal tissues, highest expression in brain, thymus and liver. In adult tissues, highest levels in brain and testis, lowest levels in peripheral blood cells

Goat Anti-RNF8 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot

- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Goat Anti-RNF8 Antibody - Images

AF1939a staining (0.1 μ g/ml) of Human Lung lysate (RIPA buffer, 35 μ g total protein per lane). Primary incubated for 1 hour. Detected by chemiluminescence.

Goat Anti-RNF8 Antibody - Background

The protein encoded by this gene contains a RING finger motif and a FHA domain. This protein has been shown to interact with several class II ubiquitin-conjugating enzymes (E2), including UBE2E1/UBCH6, UBE2E2, and UBE2E3, and may act as an ubiquitin ligase (E3) in the ubiquitination of certain nuclear proteins. Alternatively spliced transcript variants encoding distinct isoforms have been reported.

Goat Anti-RNF8 Antibody - References

Variation at the NFATC2 Locus Increases the Risk of Thiazolinedinedione-Induced Edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) Study. Bailey SD, et al. Diabetes Care, 2010 Jul 13. PMID 20628086.

53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Noon AT, et al. Nat Cell Biol, 2010 Feb. PMID 20081839.

The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Ramachandran S, et al. Proc Natl Acad Sci U S A, 2010 Jan 12. PMID 20080757.

A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. Lilley CE, et al. EMBO J, 2010 Mar 3. PMID 20075863.

Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. Talmud PJ, et al. Am J Hum Genet, 2009 Nov. PMID 19913121.