

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody

Catalog # ABO15752

Specification

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody - Product Information

Application WB. IP **Primary Accession Q9UHD2** Rabbit Host Isotype laG Reactivity Rat, Human, Mouse Clonality Monoclonal Format Liquid Description Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody . Tested in WB, IP applications. This antibody reacts with Human, Mouse, Rat.

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody - Additional Information

Gene ID 29110

Other Names Serine/threonine-protein kinase TBK1, 2.7.11.1, NF-kappa-B-activating kinase, T2K, TANK-binding kinase 1, TBK1 {ECO:0000303|PubMed:10581243, ECO:0000312|HGNC:HGNC:11584}

Calculated MW 84 kDa KDa

Application Details WB 1:500-1:2000
IP 1:50

Contents

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol, 0.4-0.5mg/ml BSA.

Immunogen A synthesized peptide derived from human Phospho-NAK/TBK1 (S172)

Purification Affinity-chromatography

Storage

Store at -20°C for one year. For short term storage and frequent use, store at 4°C for up to one month. Avoid repeated freeze-thaw cycles.

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody - Protein Information

Name TBK1 {ECO:0000303|PubMed:10581243, ECO:0000312|HGNC:HGNC:11584}

Function Serine/thre

Function
Serine/threonine kinase that plays an essential role in regulating inflammatory responses to
foreign agents (PubMed: <a <="" href="http://www.uniprot.org/citations/10581243" td="">
target="_blank">10581243, PubMed: <a <="" href="http://www.uniprot.org/citations/11839743" td="">
target="_blank">11839743, PubMed: <a <="" href="http://www.uniprot.org/citations/12692549" td="">
target="_blank">12692549, PubMed: <a <="" href="http://www.uniprot.org/citations/12702806" td="">
target=" blank">12702806, PubMed: <a <="" href="http://www.uniprot.org/citations/14703513" td="">
target=" blank">14703513, PubMed: <a <="" href="http://www.uniprot.org/citations/15367631" td="">
target=" blank">15367631, PubMed: <a <="" href="http://www.uniprot.org/citations/15485837" td="">
target=" blank">15485837, PubMed: <a <="" href="http://www.uniprot.org/citations/18583960" td="">
target=" blank">18583960, PubMed: <a <="" href="http://www.uniprot.org/citations/21138416" td="">
target=" blank">21138416, PubMed: <a <="" href="http://www.uniprot.org/citations/23453971" td="">
target=" blank">23453971, PubMed: <a <="" href="http://www.uniprot.org/citations/23453972" td="">
target=" blank">23453972, PubMed: <a <="" href="http://www.uniprot.org/citations/23746807" td="">
target=" blank">23746807, PubMed: <a <="" href="http://www.uniprot.org/citations/25636800" td="">
target=" blank">25636800, PubMed: <a <="" href="http://www.uniprot.org/citations/26611359" td="">
target=" blank">26611359, PubMed: <a <="" href="http://www.uniprot.org/citations/32404352" td="">
target=" blank">32404352, PubMed: <a <="" href="http://www.uniprot.org/citations/34363755" td="">
target=" blank">34363755, PubMed: <a <="" href="http://www.uniprot.org/citations/32298923" td="">
target="_blank">32298923). Following activation of toll-like receptors by viral or bacterial
components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors
(IRFs) IRF3 and IRF7 as well as DDX3X (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/12692549" target=" blank">12692549, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/12702806" target="_blank">12702806, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/14703513" target="_blank">14703513, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/15367631" target="_blank">15367631, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/18583960" target="_blank">18583960, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/25636800" target="_blank">25636800). This activity
allows subsequent homodimerization and nuclear translocation of the IRFs leading to
transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB
(PubMed: 12702806 ,
PubMed: 15367631 ,
PubMed: 25636800 ,
PubMed: 32972995).
In order to establish such an antiviral state, TBK1 form several different complexes whose
composition depends on the type of cell and cellular stimuli (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/23453971" target="_blank">23453971, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/23453972" target="_blank">23453972, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/23746807" target="_blank">23746807). Plays a key
role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and
TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for
phosphorylation by TBK1 (PubMed: <a <="" href="http://www.uniprot.org/citations/25636800" td="">
target="_blank">25636800, PubMed: <a <="" href="http://www.uniprot.org/citations/30842653" td="">
target="_blank">30842653). Phosphorylated IRF3 dissociates from the adapter proteins,
dimerizes, and then enters the nucleus to induce expression of interferons (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/25636800" target="_blank">25636800). Thus, several
scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be
recruited to the TBK1-containing-complexes (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/21931631" target="_blank">21931631). Under
particular conditions, functions as a NF- kappa-B effector by phosphorylating NF-kappa-B inhibitor
alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/10783893" target="_blank">10783893, PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/15489227" target="_blank">15489227). Restricts
bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177',
thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed: <a< td=""></a<>
href="http://www.uniprot.org/citations/21617041" target="_blank">21617041).
Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome

maturation (PubMed: <a href="http://www.uniprot.org/citations/27103069"

target="_blank">27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN- dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:<a href="http://www.uniprot.org/citations/29150432"

target="_blank">29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1- mediated cell death, probably acting via CYLD

phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Participates also in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed: 27125602 (/a>).

(PubMed:27135603).

Cellular Location

Cytoplasm. Note=Upon mitogen stimulation or triggering of the immune system, TBK1 is recruited to the exocyst by EXOC2.

Tissue Location

Ubiquitous with higher expression in testis. Expressed in the ganglion cells, nerve fiber layer and microvasculature of the retina.

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-Phospho-NAK/TBK1 (S172) Rabbit Monoclonal Antibody - Images

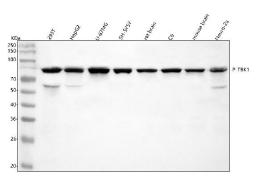


Figure 1. Western blot analysis of NAK/TBK1 using anti-NAK/TBK1 antibody (P00261).

Electrophoresis was performed on a 5-20% SDS-PAGE gel at 70V (Stacking gel) / 90V (Resolving gel) for 2-3 hours. The sample well of each lane was loaded with 30 ug of sample under reducing conditions.

Lane 1: human 293T whole cell lysates,

Lane 2: human HepG2 whole cell lysates,

Lane 3: human U-87MG whole cell lysates,

Lane 4: human SH-SY5Y whole cell lysates,

Lane 5: rat brain tissue lysates,

Lane 6: rat C6 whole cell lysates,

Lane 7: mouse brain tissue lysates,

Lane 8: mouse Neuro-2a whole cell lysates.

After electrophoresis, proteins were transferred to a nitrocellulose membrane at 150 mA for 50-90 minutes. Blocked the membrane with 5% non-fat milk/TBS for 1.5 hour at RT. The membrane was incubated with rabbit anti-NAK/TBK1 antigen affinity purified monoclonal antibody (Catalog # P00261) at 1:500 overnight at 4°C, then washed with TBS-0.1%Tween 3 times with 5 minutes each and probed with a goat anti-rabbit IgG-HRP secondary antibody at a dilution of 1:1000 for 1.5 hour at RT. The signal is developed using an Enhanced Chemiluminescent detection (ECL) kit (Catalog # EK1002) with Tanon 5200 system. A specific band was detected for NAK/TBK1 at approximately 84 kDa.