

Anti-Complement C9 Picoband Antibody

Catalog # ABO12913

Specification

Anti-Complement C9 Picoband Antibody - Product Information

ApplicationWBPrimary AccessionP02748HostRabbitReactivityHuman, MouseClonalityPolyclonalFormatLyophilizedDescriptionRabbit IgG polyclonal antibody for Complement C9 detection. Tested with WB, Direct ELISA inHuman;Mouse.

Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-Complement C9 Picoband Antibody - Additional Information

Gene ID 735

Other Names Complement component C9, Complement component C9a, Complement component C9b, C9

Calculated MW 63173 MW KDa

Application Details Western blot, 0.1-0.5 μg/ml
 Direct ELISA, 0.1-0.5 μg/ml

Subcellular Localization Secreted. Cell membrane; Multi-pass membrane protein. Secreted as soluble monomer. Oligomerizes at target membranes, forming a pre-pore. A conformation change then leads to the formation of a 100 Angstrom diameter pore.

Tissue Specificity Plasma.

Contents Each vial contains 4mg Trehalose, 0.9mg NaCl, 0.2mg Na₂HPO₄, 0.05mg NaN₃.

Immunogen E. coli-derived human Complement C9 recombinant protein (Position: K289-N515).

Cross Reactivity No cross reactivity with other proteins.

Storage

At -20°C; for one year. After r°Constitution, at 4°C; for one month. It°Can also be aliquotted and stored frozen at -20°C; for a longer time. Avoid repeated freezing and thawing.

Anti-Complement C9 Picoband Antibody - Protein Information

Name C9

Function

Constituent of the membrane attack complex (MAC) that plays a key role in the innate and adaptive immune response by forming pores in the plasma membrane of target cells (PubMed:26841934, PubMed:9212048, PubMed:9634479). C9 is the pore-forming subunit of the MAC (PubMed:26841934). C9 is the pore-forming subunit of the MAC (PubMed:26841934). C9 is the pore-forming subunit of the MAC (PubMed:26841934). C9 is the pore-forming subunit of the MAC (PubMed:26841934). C9 is the pore-forming subunit of the MAC (PubMed:26841934). PubMed:26841934). PubMed:26841934). PubMed:26841934). PubMed:26841934).

Cellular Location

Secreted. Target cell membrane; Multi-pass membrane protein. Note=Secreted as soluble monomer Oligomerizes at target membranes, forming a pre-pore. A conformation change then leads to the formation of a 100 Angstrom diameter pore

Tissue Location Plasma (at protein level).

Anti-Complement C9 Picoband Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-Complement C9 Picoband Antibody - Images

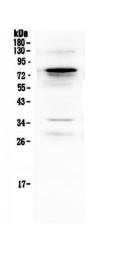


Figure 1. Western blot analysis of Complement C9 using anti-Complement C9 antibody (ABO12913).

Anti-Complement C9 Picoband Antibody - Background

Complement component 9 is a protein involved in the complement system. It participates in the formation of the Membrane Attack Complex (MAC). The MAC assembles on bacterial membranes to form a pore, permitting disruption of bacterial membrane organization. Mutations in this gene cause component C9 deficiency. And this gene is mapped to 5p13.1.