

Anti-Bcl10 Antibody

Catalog # ABO10822

Specification

Anti-Bcl10 Antibody - Product Information

ApplicationWBPrimary Accession095999HostRabbitReactivityHuman, Mouse, RatClonalityPolyclonalFormatLyophilizedDescriptionRabbit IgG polyclonal antibody for B-cell lymphoma/leukemia 10(BCL10) detection. Tested with WB in Human:Mouse:Rat.

Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-Bcl10 Antibody - Additional Information

Gene ID 8915

Other Names

B-cell lymphoma/leukemia 10, B-cell CLL/lymphoma 10, Bcl-10, CARD-containing molecule enhancing NF-kappa-B, CARD-like apoptotic protein, hCLAP, CED-3/ICH-1 prodomain homologous E10-like regulator, CIPER, Cellular homolog of vCARMEN, cCARMEN, Cellular-E10, c-E10, Mammalian CARD-containing adapter molecule E10, mE10, BCL10, CIPER, CLAP

Calculated MW 26252 MW KDa

Application Details Western blot, 0.1-0.5 μg/ml, Human, Rat, Mouse

Subcellular Localization

Cytoplasm, perinuclear region . Membrane raft . Appears to have a perinuclear, compact and filamentous pattern of expression. Also found in the nucleus of several types of tumor cells. Colocalized with DPP4 in membrane rafts.

Tissue Specificity Ubiquitous.

Protein Name B-cell lymphoma/leukemia 10

Contents Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3.

Immunogen

A synthetic peptide corresponding to a sequence at the N-terminus of human Bcl10(35-51aa ERHFDHLRAKKILSRED), identical to the related rat and mouse sequences.

Purification Immunogen affinity purified.

Cross Reactivity No cross reactivity with other proteins

Storage

At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time.Avoid repeated freezing and thawing.

Sequence Similarities Contains 1 CARD domain.

Anti-Bcl10 Antibody - Protein Information

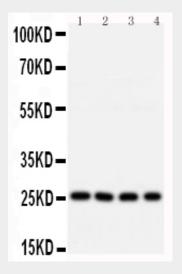
Name BCL10 {ECO:0000303|PubMed:9989495, ECO:0000312|HGNC:HGNC:989}

Function

Plays a key role in both adaptive and innate immune signaling by bridging CARD domain-containing proteins to immune activation (PubMed:10187770, PubMed:10364242, PubMed:10400625, PubMed:24074955, PubMed:25365219). Acts by channeling adaptive and innate immune signaling downstream of CARD domain-containing proteins CARD9, CARD11 and CARD14 to activate NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed: 24074955). Recruited by activated CARD domain-containing proteins: homooligomerized CARD domain-containing proteins form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10, subsequent recruitment of MALT1 and formation of a CBM complex (PubMed: 24074955). This leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed: 18287044, PubMed:24074955, PubMed:27777308). Activated by CARD9 downstream of C-type lectin receptors; CARD9-mediated signals are essential for antifungal immunity (PubMed:26488816). Activated by CARD11 downstream of T-cell receptor (TCR) and B-cell receptor (BCR) (PubMed:18264101, PubMed:18287044, PubMed:24074955, PubMed:27777308). Promotes apoptosis, pro-caspase-9 maturation and activation of NF-kappa-B via NIK and IKK (PubMed:10187815).

Cellular Location

Cytoplasm, perinuclear region. Membrane raft. Note=Appears to have a perinuclear, compact and filamentous pattern of expression. Also found in the nucleus of several types of tumor cells. Colocalized with DPP4 in membrane rafts.


Tissue Location Ubiquitous..

Anti-Bcl10 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-Bcl10 Antibody - Images

Anti-Bcl10 antibody, ABO10822, Western blottingLane 1: U87 Cell LysateLane 2: MCF-7 Cell LysateLane 3: HELA Cell LysateLane 4: COLO320 Cell Lysate

Anti-Bcl10 Antibody - Background

BCL10, B-cell CLL/lymphoma 10, gene was identified by its translocation in a case of mucosa-associated lymphoid tissue(MALT) lymphoma. The BCL10 gene is mapped to chromosome 1p22. The protein encoded by this gene contains a caspase recruitment domain(CARD), and has been shown to induce apoptosis and to activate NF-kappaB. This protein is reported to interact with other CARD domain containing proteins including CARD9, 10, 11 and 14, which are though to function as upstream regulators in NF-kappaB signaling. This protein is found to form a complex with MALT1, a protein encoded by another gene known to be translocated in MALT lymphoma. MALT1 and this protein are though to synergize in the activation of NF-kappaB, and the deregulation of either of them may contribute to the same pathogenetic process that leads to the malignancy.