Anti-TLR4 (RABBIT) Antibody
TLR4 Antibody
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Host | Rabbit |
---|---|
Conjugate | Unconjugated |
Target Species | Human |
Reactivity | Human |
Clonality | Polyclonal |
Application
| WB, IHC, E, I, LCI |
Application Note | Anti-TLR4 affinity purified antibody has been tested for use in ELISA, Immunohistochemistry, and western blot. Specific conditions for reactivity should be optimized by the end user. Expect a band approximately 96 kDa in size corresponding to TLR4 protein in overexpressed lysate by western blotting in the appropriate cell lysate or extract. |
Physical State | Liquid (sterile filtered) |
Buffer | 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 |
Immunogen | This affinity purified antibody was prepared from whole rabbit serum produced by repeated immunizations with a synthetic peptide corresponding to a region near the n-terminus of human TLR4 protein. |
Preservative | 0.01% (w/v) Sodium Azide |
Gene ID | 7099 |
---|---|
Other Names | 7099 |
Purity | This affinity purified antibody is directed against human TLR4 protein. The product was purified from monospecific antiserum by immunoaffinity chromatography. A BLAST analysis was used to suggest reactivity with TLR4 protein from human based on 100% homology with the immunizing sequence. The analysis also shows 100% cross-reactivity with gorilla and bonobo, and canine species. |
Storage Condition | Store vial at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Avoid cycles of freezing and thawing. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use. |
Precautions Note | This product is for research use only and is not intended for therapeutic or diagnostic applications. |
Name | TLR4 |
---|---|
Function | Transmembrane receptor that functions as a pattern recognition receptor recognizing pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) to induce innate immune responses via downstream signaling pathways (PubMed:10835634, PubMed:15809303, PubMed:16622205, PubMed:17292937, PubMed:17478729, PubMed:20037584, PubMed:20711192, PubMed:23880187, PubMed:27022195, PubMed:29038465). At the plasma membrane, cooperates with LY96 to mediate the innate immune response to bacterial lipopolysaccharide (LPS) (PubMed:27022195). Also involved in LPS-independent inflammatory responses triggered by free fatty acids, such as palmitate, and Ni(2+) (PubMed:20711192). Mechanistically, acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed:10835634, PubMed:21393102, PubMed:27022195, PubMed:36945827, PubMed:9237759). Alternatively, CD14-mediated TLR4 internalization via endocytosis is associated with the initiation of a MYD88-independent signaling via the TICAM1-TBK1-IRF3 axis leading to type I interferon production (PubMed:14517278). In addition to the secretion of proinflammatory cytokines, initiates the activation of NLRP3 inflammasome and formation of a positive feedback loop between autophagy and NF-kappa-B signaling cascade (PubMed:32894580). In complex with TLR6, promotes inflammation in monocytes/macrophages by associating with TLR6 and the receptor CD86 (PubMed:23880187). Upon ligand binding, such as oxLDL or amyloid-beta 42, the TLR4:TLR6 complex is internalized and triggers inflammatory response, leading to NF- kappa-B-dependent production of CXCL1, CXCL2 and CCL9 cytokines, via MYD88 signaling pathway, and CCL5 cytokine, via TICAM1 signaling pathway (PubMed:23880187). In myeloid dendritic cells, vesicular stomatitis virus glycoprotein G but not LPS promotes the activation of IRF7, leading to type I IFN production in a CD14-dependent manner (PubMed:15265881, PubMed:23880187). Required for the migration- promoting effects of ZG16B/PAUF on pancreatic cancer cells. |
Cellular Location | Cell membrane; Single-pass type I membrane protein. Early endosome. Cell projection, ruffle {ECO:0000250|UniProtKB:Q9QUK6}. Note=Upon complex formation with CD36 and TLR6, internalized through dynamin-dependent endocytosis (PubMed:20037584). Colocalizes with RFTN1 at cell membrane and then together with RFTN1 moves to endosomes, upon lipopolysaccharide stimulation. Co-localizes with ZG16B/PAUF at the cell membrane of pancreatic cancer cells (PubMed:36232715) |
Tissue Location | Highly expressed in placenta, spleen and peripheral blood leukocytes (PubMed:9237759, PubMed:9435236). Detected in monocytes, macrophages, dendritic cells and several types of T-cells (PubMed:27022195, PubMed:9237759). Expressed in pancreatic cancer cells but not in normal pancreatic cells (at protein level) (PubMed:36232715). |
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
TLR4 (Toll-Like Receptor 4). Toll-like receptors (TLRs) are signaling molecules that recognize different microbial products during infection and serve as an important link between the innate and adaptive immune responses. These proteins act through adaptor molecules such as MyD88 and TIRAP to activate various kinases and transcription factors such as Protein Kinase C (PKC) alpha/beta and NF-kB. Studies with TLR4-deficient mice indicate that the main ligand for TLR is lipopolysaccharide. Consequently, these mice also showed increased susceptibility to Gram-negative sepsis. Mutations in this gene have been associated with differences in LPS responsiveness, macular degeneration, and pertussis. Anti-TLR4 Antibody is useful for researchers interested in transcription factor research, cytokine research, MIF action through Endocytic Pathway, and rheumatoid arthritis.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.