HSP90 Antibody
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application
| WB, IHC, IP, ICC |
---|---|
Primary Accession | P08238 |
Other Accession | NP_031381.2 |
Host | Rabbit |
Reactivity | Human, Mouse, Rat |
Clonality | Polyclonal |
Description | Rabbit Anti-Human HSP90 Polyclonal |
Target/Specificity | Detects ~90kDa. |
Other Names | HSP84 Antibody, HSP86 Antibody, HSP90A Antibody, HSP90AA1 Antibody, HSP90AB1 Antibody, HSP90B Antibody, HSPC1 Antibody, HSPC2 Antibody, HSPCAL1 Antibody, HSPCAL4 Antibody, HSP90N Antibody |
Immunogen | Full length protein HSP90 |
Purification | Protein A Purified |
Storage | -20ºC |
Storage Buffer | PBS pH 7.4, 50% glycerol, 0.09% sodium azide |
Shipping Temperature | Blue Ice or 4ºC |
Certificate of Analysis | A 1:500 dilution of SPC-104 was sufficient for detection of 0.2 mg of purified HSP90 by ECL immunoblot analysis. |
Cellular Localization | Cytoplasm | Melanosome |
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
HSP90 is a highly conserved and essential stress protein that is expressed in all eukaryotic cells. From a functional perspective, HSP90 participates in the folding, assembly, maturation, and stabilization of specific proteins as an integral component of a chaperone complex (1-4). Despite its label of being a heat-shock protein, HSP90 is one of the most highly expressed proteins in unstressed cells (1–2% of cytosolic protein). It carries out a number of housekeeping functions – including controlling the activity, turnover, and trafficking of a variety of proteins. Most of the HSP90-regulated proteins that have been discovered to date are involved in cell signaling (5-6). The number of proteins now know to interact with HSP90 is about 100. Target proteins include the kinases v-Src, Wee1, and c-Raf, transcriptional regulators such as p53 and steroid receptors, and the polymerases of the hepatitis B virus and telomerase.5. When bound to ATP, HSP90 interacts with co-chaperones Cdc37, p23, and an assortment of immunophilin-like proteins, forming a complex that stabilizes and protects target proteins from proteasomal degradation. In most cases, HSP90-interacting proteins have been shown to co-precipitate with HSP90 when carrying out immunoadsorption studies, and to exist in cytosolic heterocomplexes with it. In a number of cases, variations in HSP90 expression or HSP90 mutation has been shown to degrade signaling function via the protein or to impair a specific function of the protein (such as steroid binding, kinase activity) in vivo. Ansamycin antibiotics, such as geldanamycin and radicicol, inhibit HSP90 function (7). Looking for more information on HSP90? Visit our new HSP90 Scientific Resource Guide at http://www.HSP90.ca.
References
1. Arlander S.J.H., et al. (2003) J Biol Chem 278: 52572-52577.
2. Pearl H., et al. (2001) Adv Protein Chem 59:157-186.
3. Neckers L., et al. (2002) Trends Mol Med 8:S55-S61.
4. Pratt W., Toft D. (2003) Exp Biol Med 228:111-133.
5. Pratt W., Toft D. (1997) Endocr Rev 18: 306–360.
6. Pratt W.B. (1998) Proc Soc Exptl Biol Med 217: 420–434.
7. Whitesell L., et al. (1994) Proc Natl Acad Sci USA 91: 8324–8328.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.