Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Primary Antibodies   >   Signal Transduction   >   HSP70 Antibody   

HSP70 Antibody

HSP70 Antibody, Clone C92F3A-5

     
  • SPECIFICATION
  • CITATIONS: 1
  • PROTOCOLS
  • BACKGROUND
  • detail
Product Information
Application
  • Applications Legend:
  • WB=Western Blot
  • IHC=Immunohistochemistry
  • IHC-P=Immunohistochemistry (Paraffin-embedded Sections)
  • IHC-F=Immunohistochemistry (Frozen Sections)
  • IF=Immunofluorescence
  • FC=Flow Cytopmetry
  • IC=Immunochemistry
  • ICC=Immunocytochemistry
  • E=ELISA
  • IP=Immunoprecipitation
  • DB=Dot Blot
  • CHIP=Chromatin Immunoprecipitation
  • FA=Fluorescence Assay
  • IEM=Immuno electron microscopy
  • EIA=Enzyme Immunoassay
WB, IHC, ICC, E, FC, IEM, BL, AM
Primary Accession P08107
Other Accession NP_005336.3
Host Mouse
Isotype IgG
Reactivity Human, Mouse, Rat, Rabbit, Hamster, Monkey, Pig, Chicken, Bovine, C.Elegans, Sheep, Guinea Pig, Dog, Drosophila
Clonality Monoclonal
Description Mouse Anti-Human HSP70 Monoclonal IgG
Target/Specificity Detects ~70kDa. Does not cross-react with HSC70 (HSP73).
Other Names HSP70 1 Antibody, HSP70 2 Antibody, HSP70.1 Antibody, HSP72 Antibody, HSPA1 Antibody, HSPA1A Antibody, HSPA1B Antibody
Clone Names C92F3A-5
Immunogen Human HSP70
Purification Protein G Purified
Storage -20ºC
Storage Buffer PBS pH7.4, 50% glycerol, 0.1% sodium azide
Shipping Temperature Blue Ice or 4ºC
Certificate of Analysis 1 µg/ml of SMC-100 was sufficient for detection of HSP70 in 20 µg of heat shocked HeLa cell lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.
Cellular Localization Cytoplasm
Research Areas
Citations ( 0 )

Background

HSP70 genes encode abundant heat-inducible 70-kDa HSPs (HSP70s). In most eukaryotes HSP70 genes exist as part of a multigene family. They are found in most cellular compartments of eukaryotes including nuclei, mitochondria, chloroplasts, the endoplasmic reticulum and the cytosol, as well as in bacteria. The genes show a high degree of conservation, having at least 50% identity (2). The N-terminal two thirds of HSP70s are more conserved than the C-terminal third. HSP70 binds ATP with high affinity and possesses a weak ATPase activity which can be stimulated by binding to unfolded proteins and synthetic peptides (3). When HSC70 (constitutively expressed) present in mammalian cells was truncated, ATP binding activity was found to reside in an N-terminal fragment of 44 kDa which lacked peptide binding capacity. Polypeptide binding ability therefore resided within the C-terminal half (4). The structure of this ATP binding domain displays multiple features of nucleotide binding proteins (5). All HSP70s, regardless of location, bind proteins, particularly unfolded ones. The molecular chaperones of the HSP70 family recognize and bind to nascent polypeptide chains as well as partially folded intermediates of proteins preventing their aggregation and misfolding. The binding of ATP triggers a critical conformational change leading to the release of the bound substrate protein (6). The universal ability of HSP70s to undergo cycles of binding to and release from hydrophobic stretches of partially unfolded proteins determines their role in a great variety of vital intracellular functions such as protein synthesis, protein folding and oligomerization and protein transport. For more information visit our HSP70 Scientific Resource Guide at http://www.HSP70.com.

References

1. Welch W.J. and Suhan J.P. (1986) J Cell Biol. 103: 2035-2050.
2. Boorstein W. R., Ziegelhoffer T. & Craig E. A. (1993) J.Mol. Evol. 38(1): 1-17.
3. Rothman J. (1989) Cell 59: 591-601.
4. DeLuca-Flaherty et al. (1990) Cell 62: 875-887.
5. Bork P., Sander C. & Valencia A. (1992) Proc. Nut1 Acad. Sci. USA 89: 7290-7294.
6. Fink A.L. (1999) Physiol. Rev. 79: 425-449.
7. Galan A., et al. (2000) J. Biol. Chem. 275: 11418-11424.
8. Kondo T., et al. (2000) J. Biol. Chem. 275: 8872-8879.
9. Misaki T., et al. (1994) Clin. Exp. Immun. 98: 234-239.
10. Pockley A.G., et al. (1998) Immunol. Invest. 27: 367-377.
11. Moon I.S., et al. (2001) Cereb Cortex 11(3): 238-248.
12. Dressel et al. (2000) J. Immunol. 164: 2362-2371.
13. Verma A.K., et al. (2007) Fish and Shellfish Immunology. 22(5): 547-555.
14. Banduseela V.C., et al. (2009) Physiol Genomics. 39(3): 141-159.

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

Cat# ASM10001
Availability: Inquire
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"