MAP3K9 Antibody (N-term)
Purified Rabbit Polyclonal Antibody (Pab)
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application
| WB, IHC-P, E |
---|---|
Primary Accession | P80192 |
Other Accession | Q3U1V8 |
Reactivity | Human |
Predicted | Mouse |
Host | Rabbit |
Clonality | Polyclonal |
Isotype | Rabbit IgG |
Calculated MW | 121895 Da |
Antigen Region | 159-189 aa |
Gene ID | 4293 |
---|---|
Other Names | Mitogen-activated protein kinase kinase kinase 9, Mixed lineage kinase 1, MAP3K9, MLK1, PRKE1 |
Target/Specificity | This MAP3K9 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 159-189 amino acids from the N-terminal region of human MAP3K9. |
Dilution | WB~~1:1000 IHC-P~~1:50~100 |
Format | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. |
Storage | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
Precautions | MAP3K9 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures. |
Name | MAP3K9 |
---|---|
Synonyms | MLK1, PRKE1 |
Function | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. |
Tissue Location | Expressed in epithelial tumor cell lines of colonic, breast and esophageal origin. |
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The STE group (homologs of yeast Sterile 7, 11, 20 kinases) consists of 50 kinases related to the mitogen-activated protein kinase (MAPK) cascade families (Ste7/MAP2K, Ste11/MAP3K, and Ste20/MAP4K). MAP kinase cascades, consisting of a MAPK and one or more upstream regulatory kinases (MAPKKs) have been best characterized in the yeast pheromone response pathway. Pheromones bind to Ste cell surface receptors and activate yeast MAPK pathway.
References
Dorow, D.S., et al., Eur. J. Biochem. 213(2):701-710 (1993).
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.