PIM1 Rabbit mAb
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application
| WB, IHC-P |
---|---|
Primary Accession | P11309 |
Reactivity | Human |
Host | Rabbit |
Clonality | Monoclonal Antibody |
Calculated MW | 35686 Da |
Gene ID | 5292 |
---|---|
Other Names | PIM1 |
Dilution | WB~~1/500-1/1000 IHC~~1/50-1/100 |
Format | Liquid |
Name | PIM1 |
---|---|
Function | Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis (PubMed:15528381, PubMed:1825810, PubMed:31548394). Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3) (PubMed:18593906). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity (By similarity). The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis (By similarity). Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1 (By similarity). Phosphorylation of MAP3K5, another proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis (PubMed:19749799). Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C (PubMed:16356754). Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability (PubMed:12431783). Promotes cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels (PubMed:18593906). Phosphorylation of CDKN1B, induces 14-3-3 proteins binding, nuclear export and proteasome-dependent degradation (PubMed:18593906). May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3 (PubMed:10664448). Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis (By similarity). Acts as a positive regulator of mTORC1 signaling by mediating phosphorylation and inhibition of DEPDC5 component of the GATOR1 complex (PubMed:31548394). Acts as a negative regulator of innate immunity by mediating phosphorylation and inactivation of GBP1 in absence of infection: phosphorylation of GBP1 induces interaction with 14-3-3 protein sigma (SFN) and retention in the cytosol (PubMed:37797010). Also phosphorylates and activates the ATP-binding cassette transporter ABCG2, allowing resistance to drugs through their excretion from cells (PubMed:18056989). Promotes brown adipocyte differentiation (By similarity). |
Cellular Location | [Isoform 1]: Cytoplasm. Nucleus. |
Tissue Location | Expressed primarily in cells of the hematopoietic and germline lineages. Isoform 1 and isoform 2 are both expressed in prostate cancer cell lines. |
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.