AFG3L2 Polyclonal Antibody
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application ![]()
| WB |
---|---|
Primary Accession | Q9Y4W6 |
Reactivity | Human |
Host | Rabbit |
Clonality | Polyclonal |
Calculated MW | 88584 Da |
Gene ID | 10939 |
---|---|
Other Names | AFG3-like protein 2 (EC 3.4.24.-) (Paraplegin-like protein) |
Dilution | WB~~WB 1:500-2000, ELISA 1:10000-20000 |
Format | Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide. |
Storage Conditions | -20℃ |
Name | AFG3L2 {ECO:0000303|PubMed:10395799, ECO:0000312|HGNC:HGNC:315} |
---|---|
Function | Catalytic component of the m-AAA protease, a protease that plays a key role in proteostasis of inner mitochondrial membrane proteins, and which is essential for axonal and neuron development (PubMed:19748354, PubMed:28396416, PubMed:29932645, PubMed:30683687, PubMed:31327635, PubMed:37917749, PubMed:38157846). AFG3L2 possesses both ATPase and protease activities: the ATPase activity is required to unfold substrates, threading them into the internal proteolytic cavity for hydrolysis into small peptide fragments (PubMed:19748354, PubMed:31327635). The m-AAA protease carries out quality control in the inner membrane of the mitochondria by mediating degradation of mistranslated or misfolded polypeptides (PubMed:26504172, PubMed:30683687, PubMed:34718584). The m-AAA protease complex also promotes the processing and maturation of mitochondrial proteins, such as MRPL32/bL32m, PINK1 and SP7 (PubMed:22354088, PubMed:29932645, PubMed:30252181). Mediates protein maturation of the mitochondrial ribosomal subunit MRPL32/bL32m by catalyzing the cleavage of the presequence of MRPL32/bL32m prior to assembly into the mitochondrial ribosome (PubMed:29932645). Required for SPG7 maturation into its active mature form after SPG7 cleavage by mitochondrial-processing peptidase (MPP) (PubMed:30252181). Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial- processing peptidase (MPP) (PubMed:22354088). Acts as a regulator of calcium in neurons by mediating degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:27642048, PubMed:28396416). Promotes the proteolytic degradation of GHITM upon hyperpolarization of mitochondria: progressive GHITM degradation leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2 (PubMed:35912435). Also acts as a regulator of mitochondrial glutathione homeostasis by mediating cleavage and degradation of SLC25A39 (PubMed:37917749, PubMed:38157846). SLC25A39 cleavage is prevented when SLC25A39 binds iron-sulfur (PubMed:37917749, PubMed:38157846). Involved in the regulation of OMA1-dependent processing of OPA1 (PubMed:17615298, PubMed:29545505, PubMed:30252181, PubMed:30683687, PubMed:32600459). May act by mediating processing of OMA1 precursor, participating in OMA1 maturation (PubMed:29545505). |
Cellular Location | Mitochondrion inner membrane; Multi-pass membrane protein |
Tissue Location | Ubiquitous. Highly expressed in the cerebellar Purkinje cells. |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
ATP-dependent protease which is essential for axonal and neuron development. In neurons, mediates degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:27642048). Required for the maturation of paraplegin (SPG7) after its cleavage by mitochondrial-processing peptidase (MPP), converting it into a proteolytically active mature form (By similarity).

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.