18,000+ products cover the ten top research categories, including cancer, metabolism, cardiovascular, neuroscience, and stem cells. Each antibody is crafted with care according to rigorous protocols for immunogen design and preparation, presentation to host animal, and high-affinity purification against the antigen. Quality is embedded in the production process to assure the best antibody for you.
Crown antibodies pass additional stringent quality requirements, including extended control sets, uniform results against multiple biologically relevant cell lines and tissues, and function in multiple applications.
Abgent develops 1000+ new products per year. We provide tools for path-breaking research by developing antibodies that detect a comprehensive library of novel and established targets. For established targets we seek to add antibodies that recognize new epitopes, including post-translational modifications such as phosphorylation and methylation. For new targets we consult with leading experts to accelerate development of antibodies that will propel state-of-the-art research in cellular health and disease.
Individual peptides for SARS-CoV-2 Spike glycoprotein. In order to study the specificity of cellular immune responses against SARS CoV-2 and potential immunity caused by other human Corona Viruses, Abcepta provides Spike peptide individually, as pools and in plate. These peptides can be used for antigen specific T-cell stimulation in T-cell assays or T-cell expansion.
All peptides are manufactured in the San Diego, California. Custom peptide services include long peptides (>100 aa), cyclic peptides, difficult sequences, fluorescent labels, phospho-peptides and other post-translational modifications.
The majority of Abcepta antibodies are produced using peptide immunogens. These immuno-specific peptides can be used as blocking agents when using the complementary antibodies in a range of applications.
Abcepta's portfolio of cell lines, tissues and lysates are drawn from a range of species and immortalized cell lines. All our cell lines and lysates are validated in key applications.
These tissue lysates can be used in applications such as SDS-PAGE and Western blotting. Whole cell lysates can be used as positive controls for applications such as ELISAs, immunoprecipitation (IP) and Western blotting.
Obtaining high-quality whole cell lysates can be tedious as well as time consuming. Abcepta offers a comprehensive portfolio of whole cell lysates for research use.
Browse our catalog to find the right whole cell lysate for your experiment.
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
Abcepta is a leading manufacturer of primary antibodies with more than fifteen years of experience. We supply quality antibodies and related products drug discovery and academic laboratories worldwide. Our focus is on targets covering the major research areas impacting health and disease, including cancer, metabolism, cardiovascular, neuroscience, and stem cells.
Founded in 2001, Abcepta is one of the world's largest manufacturers of research user only antibodies. WuXi Apptec, a leading global contract R&D services provider serving the pharmaceutical, biotech, and medical device industries, acquired Abcepta in October of 2011.
With its history as an original manufacturer, Abcepta has a deep and practical understanding of the production process for antibodies, peptides, and recombinant proteins. We have assembled world-class, independently credentialed facilities, operate under a strict project management paradigm with highly trained staff, rigorously test our products in-process and post-production, and monitor customer feedback to assure that we earn the trust of scientists who choose to work with us.
Abcepta may in-licenses select products and technologies to offer our customers a wide variety of options for their proteomic research needs. Contact us for further information and non-disclosure agreements. Our experienced discovery and production teams will work with you to jointly evaluate proposals and identify partnering opportunities.
We believe that attracting and supporting creative and talented people is essential to our success. Abcepta offers an energetic, friendly environment and the opportunity to further scientific research and drug discovery. Abcepta is an Equal Opportunity Employer. Send a cover letter and resume to info@abcepta.com
Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.
Serine/threonine kinase closely related to AKT1 and AKT3. All 3 enzymes, AKT1, AKT2 and AKT3, are collectively known as AKT kinase. AKT regulates many processes including metabolism, proliferation, cell survival, growth and angiogenesis, through the phosphorylation of a range of downstream substrates. Over 100 substrates have been reported so far, although for most of them, the precise AKT kinase catalyzing the reaction was not specified. AKT regulates glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal- related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser- 454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P- 5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet- derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1). AKT mediates the antiapoptotic effects of IGF1. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development (PubMed:21432781, PubMed:21620960). In response to lysophosphatidic acid stimulation, inhibits the ciliogenesis cascade. In this context, phosphorylates WDR44, hence stabilizing its interaction with Rab11 and preventing the formation of the ciliogenic Rab11-FIP3-RAB3IP complex. Also phosphorylates RAB3IP/Rabin8, thus may affect RAB3IP guanine nucleotide exchange factor (GEF) activity toward Rab8, which is important for cilia growth (PubMed:31204173). Phosphorylates PKP1, facilitating its interaction with YWHAG and translocation to the nucleus, ultimately resulting in a reduction in keratinocyte intercellular adhesion (By similarity). Phosphorylation of PKP1 increases PKP1 protein stability, translocation to the cytoplasm away from desmosome plaques and PKP1- driven cap-dependent translation (PubMed:23444369).
Cellular Location
Cytoplasm. Nucleus Cell membrane; Peripheral membrane protein. Early endosome {ECO:0000250|UniProtKB:Q60823}. Note=Through binding of the N-terminal PH domain to phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) or phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P2), recruited to the plasma membrane. Cell membrane recruitment is facilitated by interaction with CLIP3. Colocalizes with WDFY2 in early endosomes (By similarity). Localizes within both nucleus and cytoplasm in proliferative primary myoblasts and mostly within the nucleus of differentiated primary myoblasts (PubMed:17565718) {ECO:0000250|UniProtKB:Q60823, ECO:0000269|PubMed:17565718}
Tissue Location
Widely expressed. Expressed in myoblasts (PubMed:17565718).
Citations (0)
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
Submit your citation using an Abcepta antibody to info@abcepta.com, and receive a free "I Love Antibodies" mug.
Citations for related products
Application Protocols
Provided below are standard protocols that you may find useful for product applications.
AKT2 is one of 3 closely related serine/threonine- protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)- response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.