Phospho Ser1096 NMDA Receptor, NR2C Subunit Antibody
Affinity purified rabbit polyclonal antibody
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application ![]()
| WB |
---|---|
Primary Accession | Q00961 |
Reactivity | Mouse, Rat |
Predicted | Bovine, Monkey |
Host | Rabbit |
Clonality | polyclonal |
Calculated MW | 140 KDa |
Gene ID | 24411 |
---|---|
Gene Name | GRIN2C |
Other Names | Glutamate receptor ionotropic, NMDA 2C, GluN2C, Glutamate [NMDA] receptor subunit epsilon-3, N-methyl D-aspartate receptor subtype 2C, NMDAR2C, NR2C, Grin2c |
Target/Specificity | Synthetic phospho-peptide corresponding to amino acid residues surrounding Ser1096 conjugated to KLH. |
Dilution | WB~~ 1:1000 |
Format | Prepared from rabbit serum by affinity purification via sequential chromatography on phospho- and dephosphopeptide affinity columns. |
Antibody Specificity | Specific for the ~140k NR2C subunit of the NMDA receptor phosphorylated at Ser1096. Immunolabeling is blocked by preadsorption of antibody with the phospho-peptide that was used to generate the antibody but not by the corresponding dephospho-peptide. |
Storage | Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
Precautions | Phospho Ser1096 NMDA Receptor, NR2C Subunit Antibody is for research use only and not for use in diagnostic or therapeutic procedures. |
Shipping | Blue Ice |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
The ion channels activated by glutamate that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer’s, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The NR2C subunit of the receptor is thought to influence the NMDAR conductance level (Ebralidze et al., 1996). Phosphorylation of Ser1096 by PKB on NR2C has been recently demonstrated to regulate NMDA receptor binding to 14-3-3 (Chen & Roche 2009).
References
Alvestad RM, Grosshans DR, Coultrap SJ, Nakazawa T, Yamamoto T, Browning MD (2003) Tyrosine dephosphorylation and ethanol inhibition of N-methyl-D-aspartate receptor function. J Biol Chem 278:11020-11025.
Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571-577.
Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16:5014-5025.
Grosshans DR, Clayton DA, Coultrap SJ, Browning MD (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5:27-33.
Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721-1724.
Lu W-Y, Xiong Z-G, Lei S, Orser BA, Browning MD, MacDonald JF (1999) G-protein coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neurosci 2:331-338.
Snell LD, Nunley KR, Lickteig RL, Browning MD, Tabakoff B, Hoffman PL (1996) Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Mol Brain Res 40:71-78.
Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335-358.
Chen BS, Roche KW (2009) Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron;62(4):471-8.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.