ACVR1B Antibody
Mouse Monoclonal Antibody (Mab)
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Application
| WB, E |
---|---|
Primary Accession | P36896 |
Other Accession | NP_004293.1, NP_064733.3 |
Reactivity | Mouse |
Host | Mouse |
Clonality | Monoclonal |
Isotype | IgG1,K |
Clone/Animal Names | 179CT11.2.1 |
Calculated MW | 56807 Da |
Gene ID | 91 |
---|---|
Other Names | Activin receptor type-1B, Activin receptor type IB, ACTR-IB, Activin receptor-like kinase 4, ALK-4, Serine/threonine-protein kinase receptor R2, SKR2, ACVR1B, ACVRLK4, ALK4 |
Target/Specificity | This ACVR1B monoclonal antibody is generated from mouse immunized with ACVR1B recombinant protein. |
Dilution | WB~~1:500~1000 |
Format | Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein G column, followed by dialysis against PBS. |
Storage | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
Precautions | ACVR1B Antibody is for research use only and not for use in diagnostic or therapeutic procedures. |
Name | ACVR1B |
---|---|
Synonyms | ACVRLK4, ALK4 |
Function | Transmembrane serine/threonine kinase activin type-1 receptor forming an activin receptor complex with activin receptor type-2 (ACVR2A or ACVR2B). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating a many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, type-2 receptors (ACVR2A and/or ACVR2B) act as a primary activin receptors whereas the type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine- threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor such as ACVR1B. Once activated, the type- 1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor. ACVR1B also phosphorylates TDP2. |
Cellular Location | Cell membrane; Single-pass type I membrane protein |
Tissue Location | Expressed in many tissues, most strongly in kidney, pancreas, brain, lung, and liver |
Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
This gene encodes an activin A type IB receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I and two type II receptors. This protein is a type I receptor which is essential for signaling. Mutations in this gene are associated with pituitary tumors. Alternate splicing results in multiple transcript variants.
References
Rose, J.E., et al. Mol. Med. 16 (7-8), 247-253 (2010) :
Suzuki, K., et al. Biochem. Biophys. Res. Commun. 394(3):639-645(2010)
Calvanese, L., et al. J. Pept. Sci. 15(3):175-183(2009)
Esguerra, C.V., et al. Development 134(24):4381-4393(2007)
Maguire, P.B., et al. Proteomics 2(6):642-648(2002)
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.