

ACADM Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP6827b

Specification

ACADM Antibody (C-term) Blocking Peptide - Product Information

Primary Accession

P11310

ACADM Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 34

Other Names

Medium-chain specific acyl-CoA dehydrogenase, mitochondrial, MCAD, ACADM

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP6827b was selected from the C-term region of human ACADM. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

ACADM Antibody (C-term) Blocking Peptide - Protein Information

Name ACADM (HGNC:89)

Function

Medium-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (PubMed:1970566, PubMed:21237683, PubMed:2251268, PubMed:8823175). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl-CoA (PubMed:2251268/a>). Electron transfer flavoprotein (ETF) is the electron acceptor that transfers electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase)

 $\label{lem:compositions} $$(PubMed:15159392, $$PubMed:25416781). Among the different mitochondrial acyl-CoA dehydrogenases, medium-chain specific acyl-CoA dehydrogenase acts specifically on acyl-CoAs with saturated 6 to 12 carbons long primary chains (PubMed:1970566, PubMed:21237683, PubMed:251268, PubMed:8823175).$

Cellular LocationMitochondrion matrix

ACADM Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

ACADM Antibody (C-term) Blocking Peptide - Images

ACADM Antibody (C-term) Blocking Peptide - Background

ACADM is the medium-chain specific (C4 to C12 straight chain) acyl-Coenzyme A dehydrogenase. The homotetramer enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway.

ACADM Antibody (C-term) Blocking Peptide - References

Ferreira, A.C., et.al., Genet. Mol. Res. 8 (2), 487-493 (2009)